Electronics Circuits & Tutorials - Electronics Hobby Projects - A Complete Electronic Resource Centre
Electronics Circuits & Tutorials

Home About us Electronic Tutorials Engineering Hobby Projects Online Dictionaries Contact us
Tutorials
  • Basic/Beginners
  • Intermediate/Advance
  • Microcontrollers
  • Microprocessors
  • Electronics Symbols
  • Electronics Formulas
  • Dictionary of Units

     more....

Dictionaries
  • Electronics Terms
  • Abbreviations
  • Computer Terms
  • Physics Glossary
  • Science Glossary
  • Space & Solar Terms
  • Semiconductor Symbols / Abbreviation
  • Radio Terminology Bibliography

     more....

Projects
  • Engineering Projects
Home > Electronics Tutorials > Online Computer Terms Dictionary > E

Online Computer Terms Dictionary - E

eta conversion

<theory> In lambda-calculus, the eta conversion rule states

	\ x . f x  <-->  f

provided x does not occur as a free variable in f and f is a function. Left to right is eta reduction, right to left is eta abstraction (or eta expansion).

This conversion is only valid if bottom and \ x . bottom are equivalent in all contexts. They are certainly equivalent when applied to some argument - they both fail to terminate. If we are allowed to force the evaluation of an expression in any other way, e.g. using seq in Miranda or returning a function as the overall result of a program, then bottom and \ x . bottom will not be equivalent.

See also observational equivalence, reduction.

 


Nearby terms: et « ET++ « eta abstraction « eta conversion » eta expansion » eta reduction » ETB
 

Discover
  • C/C++ Language Programming Library
  • Electronic Conversions
  • History of Electronics
  • History of Computers
  • Elec. Power Standards
  • Online Calculator and Conversions
  • Electrical Hazards - Health & Safety
  • Datasheets
  • Quick Reference links
  • Electronics Magazines
  • Career in Electronics
  • EMS Post Tracking

     more......

Home Electronic Tutorials Engineering Hobby Projects Resources Links Sitemap Disclaimer/T&C

Copyright © 1999-2020 www.hobbyprojects.com  (All rights reserved)