Bezier curve
<graphics> A type of curve defined by mathematical formulae, used in
computer graphics. A curve with coordinates P(u), where u varies from 0 at one
end of the curve to 1 at the other, is defined by a set of n+1 "control points"
(X(i), Y(i), Z(i)) for i = 0 to n.
P(u) = Sum i=0..n [(X(i), Y(i), Z(i)) * B(i, n, u)]
B(i, n, u) = C(n, i) * u^i * (1u)^(ni)
C(n, i) = n!/i!/(ni)!
A Bezier curve (or surface) is defined by its control points, which makes
it invariant under any affine mapping (translation,
rotation, parallel projection), and thus even under
a change in the axis system. You need only to
transform the control points and then compute the
new curve. The control polygon defined by the points
is itself affine invariant.
Bezier curves also have the variationdiminishing property. This makes them
easier to split compared to other types of curve such as Hermite or Bspline.
Other important properties are multiple values, global and local control,
versatility, and order of continuity.
[What do these properties mean?]
(19960612)
Nearby terms:
beta testing « beta version « Bezier « Bezier
curve » Bezier surface » bf » BFI
